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Complex Polynomials

Polynomial P : C→ C of degree d ≥ 2:

P(z) = adzd + ad−1zd−1 + · · ·+ a1z + a0

Compactify C to C∞.
For P,∞ is attracting fixed point: for z ∈ C with |z|
sufficiently large,

limn→∞ Pn(z) =∞.
Basin of attraction of∞:

B∞ := {z ∈ C | lim
n→∞

Pn(z) =∞}

B∞ is an open set.
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Julia and Fatou Sets

Definitions:
Julia set J(P) := boundary of B∞.
Fatou set F (P) := C∞ \ J(P).
Filled Julia set K (P) := C∞ \ B∞.

Fun Facts:
J(P) is nonempty, compact, and perfect.
K (P) does not separate C.
Attracting orbits are in Fatou set.
Repelling orbits are in Julia set.
We will assume J(P) is connected (a continuum: compact,
connected metric space).
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Basillica z 7→ z2 − 1

Julia set pictures by Fractalstream
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Douady Rabbit z 7→ z2 + (−0.12 + 0.78i)
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Twisted Rabbit z 7→ z2 + (0.057 + 0.713i)
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Airplane z 7→ z2 − 1.75
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Minnie Mouse z 7→ z3 + (0.545 + 0.539i)
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Helicopter z 7→ z3 + (−0.2634− 1.2594i)
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Scorpion/Scepter z 7→ z3 + 3(0.785415i)z2
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Butterfly z 7→ z3 + 3(−0.5)z2 + (0.75 + 0.661438i)
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Ninja Throwing Star z 7→ z3 + (0.20257 + 1.095i)
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The Simplest Julia Set – the Unit Circle ∂D
P(z) = z2 re2πi t 7→ r 2e2πi 2t

The complement C∞ \ D of the closed unit disk is the basin of
attraction, B∞, of infinity.
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Dynamics on the Unit Circle

Consider P(z) = zd on the unit circle ∂D.
z = re2πt 7→ rde2πi(dt) −→ Angle 2πt 7→ 2π(dt).
Measure angles in revolutions:
Points on ∂D are coordinatized by [0,1).

σd : t 7→ dt (mod 1) on ∂D
.
Example d = 2:
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Bottcher’s Theorem

D∞ D∞

B∞ B∞

-z 7→zd

?

φ

?

φ

-

P
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External Rays P(z) = z2 + (−0.12 + 0.78i)

1/7
2/7

4/7
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External Rays −→ Laminations

Laminations were introduced by William Thurston as a way
of encoding connected polynomial Julia sets.

Coincident external rays Rabbit triangle

1/7
2/7

4/7
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The Rabbit Lamination

The rabbit Julia set The rabbit lamination

1/7
2/7

4/7

Hyperbolic lamination pictures courtesy of Logan Hoehn
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Laminations of the Unit Disk D

Definition

A lamination L is a collections of chords of D, which we call
leaves, with the property that any two leaves meet, if at all,
in a point of ∂D, and
such that L has the property that

L∗ := ∂D ∪ {∪L}

is a closed subset of D.
We allow degenerate leaves – points of ∂D.

Note that L∗ is a continuum: compact, connected metric space.
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Extending σd to Leaves

If ` ∈ L is a leaf, we write ` = ab, where a and b are the
endpoints of ` in ∂D.
We define σd(`) to be the chord σd(a)σd(b).
The length of a chord is the length of the shorter arc of the
circle subtended.
If it happens that σd(a) = σd(b), then σd(`) is a point,
called a critical value of L, and we say ` is a critical leaf.
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Making the Lamination dynamic!

Definition (Sibling Invariant Lamination)
A lamination L is said to be sibling d-invariant provided that:

1 (Forward Invariant) For every ` ∈ L, σd(`) ∈ L.
2 (Backward Invariant) For every non-degenerate `′ ∈ L,

there is a leaf ` ∈ L such that σd(`) = `′.
3 (Sibling Invariant) For every `1 ∈ L with σd(`1) = `′, a

non-degenerate leaf, there is a full sibling collection of
pairwise disjoint leaves {`1, `2, . . . , `d} ⊂ L such that
σd(`i) = `′.

Conditions (1), (2) and (3) allow generating a sibling invariant
lamination from a finite amount of initial data.
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σ2 Binary Coordinates

Location dynamically defined.

0

1

0001

10 11

000

001010

111

110

011

100

101

0000

0001
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σ2 Binary Coordinates and Rabbit

In binary coordinates, σ2 is the “forgetful” shift.
The overline means the coordinates repeat.
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Generating a Lamination from Finite Initial Data

Definition (Pullback Scheme)
A pullback scheme for σd is a collection of d branches
τ1, τ2, . . . , τd of the inverse of σd whose ranges partition ∂D.

001

010

100

Data: Forward invariant lamination.
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Pullback Scheme

Definition (Guiding Critical Chords)
The generating data of a pullback scheme are a forward
invariant periodic collection of leaves and a collection of d
interior disjoint guiding critical chords.

001

010

100

001

010

100

1010

Data: Forward invariant lamination. Guiding critical chord(s).
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Pullback Sequence

001

010

100
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Pullback Sequence

001

010

100

001

010

100

1010

1100

0001
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Pullback Sequence
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Pullback Sequence
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Pullback Sequence
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Pullback Sequence
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Importance of Guiding Crital Chord
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Ambiguity
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Quadratic Lamination and Julia Set

Rabbit Lamination Rabbit Julia Set

Quotient space in plane =⇒ homeomorphic to rabbit Julia set.
Semiconjugate dynamics
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Lamination Data for Rabbit Lamination

The critical chord and one endpoint determine the lamination.

001

010

100

1010

0

The rabbit triangle’s vertices are the only periodic orbit that
stays in the left half.
The fixed point 0 is the only periodic orbit that stays in the
right half.
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Critical Portrait −→ Dual Graph

Abstract from the Lamination Data just the critical chord.
Bicolored Critical Portrait Bicolored Dual Graph

0

P

F

P F
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Cast of Characters

Julia Set Lamination Lamination Data

→ →

001

010

100

1010

0

→

→

0

P

F

→
P F

Critical Portrait Bicolored Tree
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Cast of Characters

Julia Set Lamination Lamination Data

↔ ↔

001

010

100

1010

0

↔

→

0

P

F

↔
P F

Critical Portrait Bicolored Tree
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The Simplest Lamination

Definition
For given lamination data for σd consisting of a collection of
periodic polygons and guiding critical chords, we call a
pull-back lamination whose Fatou domains
(1) are bordered by sides of the given polygons, and
(2) contain the guiding critical chords,

a simplest lamination for the given data.

There is no claim that a simplest lamination is unique,
though that would be a desireable consequence of a good
definition.
See Brandon Barry’s dissertation:
Theorem. For σ3, there is always a simplest lamination.
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σ3 and Ternary Coordinates

Ternary coordinates correspond to shift σ3.
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Critical Chords, Critical Sectors, and Fixed Points

Example for σ3 (angle-tripling):

P

F 01

P
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Weakly Bicolored Trees

Theorem: Critical portraits correspond dually to weakly
bicolored trees. [George, Harris]

Definition
A tree is said to be weakly bicolored provided it satisfies the
following conditions:

1 Each of two vertex colors (say, red and blue) is used at
least once.

2 One vertex color, say blue, can be adjacent to itself.
3 One vertex color, say red, cannot be adjacent to itself.

Problem: How many different weakly bicolored trees are there,
up to orientation-preserving planar isomorphism, with n
vertices?
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Weakly Bicolored Trees

Below are the three possible weakly bicolored trees on three
vertices up to orientation-preserving planar isomorphism:

F

P

F

F

P

F

P

F

P

Graphs corresponding dually to critical portraits are always
trees.
Critical portraits that produce equivalent laminations are
rotations of each other.
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Role Reversal: P-F-F

Bicolored Tree Critical Portrait Lamination Data

F

P

F →

01

P

F

F
→ →

→ →
Lamination Julia Set
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Role Reversal: P-F-F

Bicolored Tree Critical Portrait Lamination Data

F

P

F →

01

P

F

F
→

001

010

100

1010

2010

01

→

→ →
Lamination Julia Set
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First two Pullbacks of Triangle

50 / 87



Polynomial Julia Sets and Laminations
Critical Chords and Pullbacks

Critical Portraits, Dual Graphs, and Simplest Laminations

First two Pullbacks of Triangle
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Role Reversal: P-F-F

Bicolored Tree Critical Portrait Lamination Data

F

P

F →

01

P

F

F
→

001

010

100

1010

2010

01

→

→ →
Lamination Julia Set
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Ternary Checkerboard
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Verifying Angles
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Verifying Angles
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Role Reversal: P-F-P

Bicolored Tree Critical Portrait Lamination Data

P

F

P →

P

P

F

→

P

P

F
01

12 21

→

→ →

Lamination Julia Set
56 / 87



Polynomial Julia Sets and Laminations
Critical Chords and Pullbacks

Critical Portraits, Dual Graphs, and Simplest Laminations

Pullback Sequence

2112

0

10

1

112
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Pullback Sequence
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0

10

1

112
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Pullback Sequence
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Pullback Sequence
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Pullback Sequence
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Pullback Sequence
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Pullback Sequence

Scorpion Lamination Scorpion Julia set
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Role Reversal: P-F-P

Bicolored Tree Critical Portrait Lamination Data

P

F

P →

P

P

F

→

P

P

F
01

12 21

→

→ →

Lamination Julia Set
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Finding the Diamond

Can we find a cubic polynomial and a resulting Julia set
incorporating the diamond?

01

0110

02

20 65 / 87
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Finding the Diamond

The lamination data is enough to find the diamond Julia set
among a parameterized family of cubic polynomials:

z 7→ z3 + 3az2 + b, for (a,b) ∈ C2.
Two period 2 Fatou domains −→
Two period 2 critical points −→ 0 and −2a −→
Two simultaneous equations in parameters a and b −→
Multiple specific parameters (a,b):

set a to -0.5. set b to 0.75 + 0.661438i.
set a to -0.5. set b to 0.75 - 0.661438i.
set a to 0.5. set b to -0.75 + 0.661438i.
set a to 0.5. set b to -0.75 - 0.661438i.
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Finding the Diamond

The lamination data is enough to find the diamond Julia set
among a parameterized family of cubic polynomials:

z 7→ z3 + 3az2 + b, for (a,b) ∈ C2.
Two period 2 Fatou domains −→
Two period 2 critical points −→ 0 and −2a −→
Two simultaneous equations in parameters a and b −→
Multiple specific parameters (a,b):

set a to -0.5. set b to 0.75 + 0.661438i.
set a to -0.5. set b to 0.75 - 0.661438i.
set a to 0.5. set b to -0.75 + 0.661438i.
set a to 0.5. set b to -0.75 - 0.661438i.
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Role Reversal: F-P-F (Diamond)

Bicolored Tree Critical Portrait Lamination Data
F

P

F→

P

F

01

F

→

01

0110

02

20 →

→ →
Lamination Julia Set
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Role Reversal: F-P-F (Diamond)

Bicolored Tree Critical Portrait Lamination Data
F

P

F→

P

F

01

F

→

01

0110

02

20 →

→ →
Lamination Julia Set (Butterfly)
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Role Reversal: F-P-F (Diamond)

Bicolored Tree Critical Portrait Lamination Data
F

P

F→

P

F

01

F

→
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20 →

→ →
Lamination Julia Set (Butterfly)
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Periodic Lamination Data

120
212

122

201

221

012

What about guiding critical chords? cf: Brandon Barry
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Periodic Lamination Data

201

120

212

122

221

012

1 0

Consider fixed points and chord closest to critical length.
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Role Reversal: ?-?-?

Bicolored Tree Critical Portrait Periodic Lamination Data

→
?

F

01 ?

→ 201

120

212

122

221

012

1 0

→

→ →
Lamination Julia Set
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Role Reversal: F-F-? or F-?-F

Bicolored Tree Critical Portrait Periodic Lamination Data
F

P

F

→
P

F

F

01

→ 201

120

212

122

221

012

1 0

→

→ →
Lamination Julia Set
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Role Reversal: F-F-P

Bicolored Tree Critical Portrait Lamination Data
F

P

F

→
P

F

F

01

→
120

212

122

201

221

012

0201

2201

→

→ →
Lamination Julia Set
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Pulling back longest leaf

120

212

0201

2201

122

201

M

m

M'

M''
G

0122

1122

020
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Role Reversal: F-F-P

Bicolored Tree Critical Portrait Lamination Data
F

P

F

→
P

F

F

01

→
120

212

122

201

221

012

0201

2201

→

→ →
Lamination Helicopter Julia Set
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Periodic Forcing

120

212

122

201

221

012

0201

2201

1 0

12
21

A major goal is to understand periodic forcing for degree d ≥ 3.
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Some Problems

1 What role is played by periodic forcing in determining the
simplest lamination from given periodic data.

2 Does each initial lamination data set (periodic polygons
and critical chords) correspond to some complex
polynomial?

3 How many weakly bicolored trees are there for a given
degree (number of vertices)?
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Meta-Problems

1 Are laminations useful in understanding polynomial
dynamics?

Wandering branch points exist for polynomial Julia sets of
degree 3. [Blokh and Oversteegen]
There are two distinct kinds of branch points that first return
without rotation for polynomial Julia sets of degree 3.
[Barry and M.]

2 Are laminations applicable outside polynomial dynamics?
Julia sets of the exponential family Eλ(z) = λez can be
described by laminations of the half-plane. [Hartley and M.]
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Meta-Problems

1 Are laminations useful in understanding polynomial
dynamics?

Wandering branch points exist for polynomial Julia sets of
degree 3. [Blokh and Oversteegen]
There are two distinct kinds of branch points that first return
without rotation for polynomial Julia sets of degree 3.
[Barry and M.]

2 Are laminations applicable outside polynomial dynamics?
Julia sets of the exponential family Eλ(z) = λez can be
described by laminations of the half-plane. [Hartley and M.]
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Meta-Problems

1 Are laminations useful in understanding polynomial
dynamics?

Wandering branch points exist for polynomial Julia sets of
degree 3. [Blokh and Oversteegen]
There are two distinct kinds of branch points that first return
without rotation for polynomial Julia sets of degree 3.
[Barry and M.]

2 Are laminations applicable outside polynomial dynamics?
Julia sets of the exponential family Eλ(z) = λez can be
described by laminations of the half-plane. [Hartley and M.]
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Meta-Problems

1 Are laminations useful in understanding polynomial
dynamics?

Wandering branch points exist for polynomial Julia sets of
degree 3. [Blokh and Oversteegen]
There are two distinct kinds of branch points that first return
without rotation for polynomial Julia sets of degree 3.
[Barry and M.]

2 Are laminations applicable outside polynomial dynamics?
Julia sets of the exponential family Eλ(z) = λez can be
described by laminations of the half-plane. [Hartley and M.]
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Meta-Problems

1 Are laminations useful in understanding polynomial
dynamics?

Wandering branch points exist for polynomial Julia sets of
degree 3. [Blokh and Oversteegen]
There are two distinct kinds of branch points that first return
without rotation for polynomial Julia sets of degree 3.
[Barry and M.]

2 Are laminations applicable outside polynomial dynamics?
Julia sets of the exponential family Eλ(z) = λez can be
described by laminations of the half-plane. [Hartley and M.]

84 / 87



Polynomial Julia Sets and Laminations
Critical Chords and Pullbacks

Critical Portraits, Dual Graphs, and Simplest Laminations

Preview of David George’s talk

Correspondence between generic critical portraits and
bicolored trees.
Non-generic critical portraits, all-critical polygons, and
tricolored trees.
Orbits under σd commute with rotation by a fixed point.
The pullback step under σd commutes with rotation by a
fixed point.
Dynamical equivalence of pullback laminations.

THANKS!
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Rotation by a Fixed Point: F-F-P −→ P-F-F

F

P

F

Bicolored Tree Helicopter Julia Set
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Rotation by a Fixed Point: F-F-P −→ P-F-F

F

P

F

Rotated Bicolored Tree Rotated Helicopter
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Role Reversal: F-P-F

Bicolored Tree Critical Portrait Lamination Data
F

P

F→

P

F

01

F

→

01

02

20 →

→ →
Lamination Julia Set
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Exponential Laminations

Julia set of Eλ(z) = λez , λ = 3 + π Half-plane lamination

Laminations can be adapted to the Exponential family of
functions using a half-plane model. Cf: Hartley
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