Critical Portraits of Complex Polynomials

John C. Mayer

Department of Mathematics University of Alabama at Birmingham

May 24, 2018

2018 Topology Workshop Nipissing University

1 / 87

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ...

Coworkers

PhD Dissertation (2015): *On the Simplest Lamination of a Given Identity Return Triangle* Brandon L. Barry

UG Posters: (2017) *Critical Portraits and Weakly BiColored Trees* (2018) *Ambiguous or Non-Generic Critical Portraits of Complex Polynomials* David J. George and Simon D. Harris

MS Thesis (2017): *Exponential Laminations*

Patrick B. Hartley

Work in Progress

[Critical Chords and Pullbacks](#page-25-0)

3 [Critical Portraits, Dual Graphs, and Simplest Laminations](#page-36-0)

2 [Critical Chords and Pullbacks](#page-25-0)

3 [Critical Portraits, Dual Graphs, and Simplest Laminations](#page-36-0)

イロト イ団 トイ ヨ トイ ヨ トー 4 / 87

[Polynomial Julia Sets and Laminations](#page-3-0)

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ … 5 / 87

Complex Polynomials

• Polynomial $P: \mathbb{C} \to \mathbb{C}$ of degree $d > 2$:

$$
P(z) = a_d z^d + a_{d-1} z^{d-1} + \cdots + a_1 z + a_0
$$

- \bullet Compactify \mathbb{C} to \mathbb{C}_{∞} .
- For *P*, ∞ is attracting fixed point: for $z \in \mathbb{C}$ with |z| sufficiently large,

$$
\lim_{n\to\infty}P^n(z)=\infty.
$$

 \bullet Basin of attraction of ∞ :

$$
B_\infty:=\{z\in\mathbb{C}\mid \lim_{n\to\infty}P^n(z)=\infty\}
$$

B[∞] is an open set.

Julia and Fatou Sets

Definitions:

- \bullet Julia set *J*(*P*) := boundary of *B*_∞.
- **•** Fatou set $F(P) := \mathbb{C}_{\infty} \setminus J(P)$.
- **•** Filled Julia set $K(P) := \mathbb{C}_{\infty} \setminus B_{\infty}$.

Fun Facts:

- *•* $J(P)$ is nonempty, compact, and perfect.
- *K*(*P*) does not separate C.
- Attracting orbits are in Fatou set.
- Repelling orbits are in Julia set.
- We will assume *J*(*P*) is connected (a continuum: compact, connected metric space).

[Polynomial Julia Sets and Laminations](#page-3-0)

[Critical Chords and Pullbacks](#page-25-0) [Critical Portraits, Dual Graphs, and Simplest Laminations](#page-36-0)

Basillica *z* 7→ *z*

$\overline{z} \mapsto z^2 - 1$

Julia set pictures by Fractalstream

Douady Rabbit

$\overline{z} \mapsto \overline{z^2 + (-0.12 + 0.78i)}$

Twisted Rabbit

$z \mapsto z^2 + (0.057 + 0.713i)$

[Polynomial Julia Sets and Laminations](#page-3-0)

[Critical Chords and Pullbacks](#page-25-0) [Critical Portraits, Dual Graphs, and Simplest Laminations](#page-36-0)

Airplane *z* 7→ *z*

$z \mapsto z^2 - 1.75$

メロトメ 御 トメ 君 トメ 君 トー \Rightarrow 299 11 / 87

Minnie Mouse

$z \mapsto z^3 + (0.545 + 0.539i)$

[Polynomial Julia Sets and Laminations](#page-3-0) [Critical Chords and Pullbacks](#page-25-0)

[Critical Portraits, Dual Graphs, and Simplest Laminations](#page-36-0)

Helicopter *z* 7→ *z*

$z \mapsto z^3 + (-0.2634 - 1.2594i)$

S corpion/Scepter

³ + 3(0.785415*i*)*z* 2

14 / 87

 Ω

Butterfly ³ + 3(−0.5)*z* ² + (0.75 + 0.661438*i*)

Ninja Throwing Star

$z \mapsto z^3 + (0.20257 + 1.095i)$

16 / 87

The Simplest Julia Set – the Unit Circle $\partial \mathbb{D}$ $P(z) = z^2$ $re^{2\pi i\ t} \mapsto r^2 e^{2\pi i\ 2t}$

The complement $\mathbb{C}_{\infty}\setminus\overline{\mathbb{D}}$ of the closed unit disk is the basin of attraction, B_{∞} , of infinity.

17 / 87

Dynamics on the Unit Circle

Consider $P(z) = z^d$ on the unit circle $\partial \mathbb{D}$.

•
$$
z = re^{2\pi t} \mapsto r^d e^{2\pi i (dt)} \longrightarrow
$$
 Angle $2\pi t \mapsto 2\pi (dt)$.

• Measure angles in revolutions: Points on $\partial \mathbb{D}$ are coordinatized by [0, 1).

 $\sigma_d : t \mapsto dt \pmod{1}$ on ∂D

Example $d = 2$:

.

Bottcher's Theorem $\mathbb{D}_{\infty} \xrightarrow{z \mapsto z^d} \mathbb{D}_{\infty}$ ϕ ϕ ₩. ❄ B_{∞} *D B* ∞ $\ddot{ }$ *P* (ロトイ部)→(差)→(差)→ ∍ QQ

19 / 87

<u>External Rays</u>

$P(z) = z^2 + (-0.12 + 0.78i)$

External Rays $→$ Laminations

Laminations were introduced by William Thurston as a way of encoding connected polynomial Julia sets.

Coincident external rays **Rabbit triangle**

The Rabbit Lamination

The rabbit Julia set The rabbit lamination

Hyperbolic lamination pictures courtesy of Logan Hoehn

Laminations of the Unit Disk $\mathbb D$

Definition

- \bullet A *lamination* $\mathcal L$ is a collections of chords of $\mathbb D$, which we call *leaves*, with the property that any two leaves meet, if at all, in a point of ∂D, and
- \bullet such that $\mathcal L$ has the property that

$$
\mathcal{L}^*:=\partial \mathbb{D}\cup \{\cup \mathcal{L}\}
$$

is a closed subset of \overline{D} .

We allow *degenerate* leaves – points of ∂D.

Note that \mathcal{L}^* is a continuum: compact, connected metric space.

Extending σ*^d* to Leaves

- **•** If $\ell \in \mathcal{L}$ is a leaf, we write $\ell = \overline{ab}$, where *a* and *b* are the endpoints of ℓ in $\partial \mathbb{D}$.
- We define $\sigma_d(\ell)$ to be the chord $\sigma_d(a)\sigma_d(b)$.
- The *length* of a chord is the length of the shorter arc of the circle subtended.
- **If** it happens that $\sigma_d(a) = \sigma_d(b)$, then $\sigma_d(\ell)$ is a point, called a *critical value* of \mathcal{L} , and we say ℓ is a *critical* leaf.

Making the Lamination dynamic!

Definition (Sibling Invariant Lamination)

A lamination L is said to be *sibling d -invariant* provided that:

- **1** (Forward Invariant) For every $\ell \in \mathcal{L}$, $\sigma_d(\ell) \in \mathcal{L}$.
- 2 (Backward Invariant) For every non-degenerate $\ell' \in \mathcal{L}$, there is a leaf $\ell \in \mathcal{L}$ such that $\sigma_{\boldsymbol{d}}(\ell) = \ell'.$
- **3** (Sibling Invariant) For every $\ell_1 \in \mathcal{L}$ with $\sigma_d(\ell_1) = \ell'$, a non-degenerate leaf, there is a *full sibling collection* of pairwise disjoint leaves $\{\ell_1, \ell_2, \ldots, \ell_d\} \subset \mathcal{L}$ such that $\sigma_d(\ell_i) = \ell'.$

Conditions (1), (2) and (3) allow generating a sibling invariant lamination from a finite amount of initial data.

 σ_2 Binary Coordinates

Location dynamically defined.

σ_2 Binary Coordinates and Rabbit

In binary coordinates, σ_2 is the "forgetful" shift. The overline means the coordinates repea[t.](#page-25-0)

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ...

Generating a Lamination from Finite Initial Data

Definition (Pullback Scheme)

A *pullback scheme* for σ*^d* is a collection of *d* branches $\tau_1, \tau_2, \ldots, \tau_d$ of the inverse of σ_d whose ranges partition $\partial \mathbb{D}$.

Data: Forward invariant lamination.

Pullback Scheme

Definition (Guiding Critical Chords)

The generating data of a pullback scheme are a *forward invariant periodic collection of leaves* and a collection of *d* interior disjoint *guiding critical chords*.

D[a](#page-25-0)ta: Forward invariant lamination. Gui[di](#page-27-0)[ng](#page-29-0) [c](#page-27-0)[rit](#page-28-0)[i](#page-29-0)[c](#page-36-0)a[l](#page-35-0) c[h](#page-24-0)[o](#page-25-0)[r](#page-35-0)[d](#page-36-0)[\(s](#page-0-0)[\).](#page-86-0)

29 / 87

Pullback Sequence

-
-
-
-
-
-
-
-
-
-
-
-

Pullback Sequence

イロトメ 御 トメ 君 トメ 君 トー 君 31 / 87

Pullback Sequence

-
-
-
-
-
-
-
-
-
- -

Pullback Sequence

Pullback Sequence

イロン イ団 メイミン イモン E QQ 34 / 87

Pullback Sequence

メロトメ 御 トメ 重 トメ 重 トー E Ω 35 / 87

Importance of Guiding Crital Chord

-
-
-
-
-
-
-
-
-
-
-
-
Ambiguity

Quadratic Lamination and Julia Set

Rabbit Lamination **Rabbit Julia Set**

Quotient space in plane \implies homeomorphic to rabbit Julia set. Semiconjugate dynami[cs](#page-36-0) $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R}$

Lamination Data for Rabbit Lamination

The critical chord and one endpoint determine the lamination.

- The rabbit triangle's vertices are the only periodic orbit that stays in the left half.
- \bullet The fixed point $\overline{0}$ is the only periodic orbit that stays in the right half. K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ...

Critical Portrait → Dual Graph

Abstract from the Lamination Data just the critical chord. Bicolored Critical Portrait Bicolored Dual Graph

Cast of Characters

Cast of Characters

The Simplest Lamination

Definition

For given lamination data for σ_d consisting of a collection of periodic polygons and guiding critical chords, we call a pull-back lamination whose Fatou domains (1) are bordered by sides of the given polygons, and (2) contain the guiding critical chords, a *simplest lamination* for the given data.

- There is no claim that a simplest lamination is unique, though that would be a desireable consequence of a good definition.
- See Brandon Barry's dissertation: **Theorem**. For σ_3 , there is always a simplest lamination.

σ_3 and Ternary Coordinates

Ternary coordinates correspond to shift σ_3 .

Critical Chords, Critical Sectors, and Fixed Points

Example for σ_3 (angle-tripling):

Weakly Bicolored Trees

Theorem: Critical portraits correspond dually to weakly bicolored trees. [George, Harris]

Definition

A tree is said to be *weakly bicolored* provided it satisfies the following conditions:

- **1** Each of two vertex colors (say, red and blue) is used at least once.
- 2 One vertex color, say blue, can be adjacent to itself.
- **3** One vertex color, say red, cannot be adjacent to itself.

Problem: How many different weakly bicolored trees are there, up to orientation-preserving planar isomorphism, with *n* vertices?

Weakly Bicolored Trees

Below are the three possible weakly bicolored trees on three vertices up to orientation-preserving planar isomorphism:

- Graphs corresponding dually to critical portraits are always trees.
- Critical portraits that produce equivalent laminations are rotations of each other. K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ...

Role Reversal: P-F-F

Role Reversal: P-F-F

First two Pullbacks of Triangle

-
-
-
-
-
-
-
-
-
-
- -

First two Pullbacks of Triangle

Role Reversal: P-F-F

52 / 87

Ternary Checkerboard

 QQQ 53 / 87

Verifying Angles

 QQ 54 / 87

Verifying Angles

メロメメ 御き メモメメモメー 55 / 87

Role Reversal: P-F-P

Pullback Sequence

メロメメ 御き メモ メメモト ∍ つくい 57 / 87

Pullback Sequence

Scorpion Lamination Scorpion Julia set

イロト イ押 トイヨ トイヨト 63 / 87

Role Reversal: P-F-P

64 / 87

Finding the Diamond

Can we find a cubic polynomial and a resulting Julia set incorporating the diamond?

Finding the Diamond

The lamination data is enough to find the diamond Julia set among a parameterized family of cubic polynomials: $z\mapsto z^3+3az^2+b,$ for $(a,b)\in\mathbb{C}^2.$

• Two period 2 Fatou domains \longrightarrow

- Two period 2 critical points $→$ 0 and $-2a$ $→$
- Two simultaneous equations in parameters *a* and *b* −→
- Multiple specific parameters (*a*, *b*):

set a to -0.5. set b to 0.75 + 0.661438i. set a to -0.5. set b to 0.75 - 0.661438i. set a to 0.5. set b to -0.75 + 0.661438i. set a to 0.5. set b to -0.75 - 0.661438i.

Finding the Diamond

- The lamination data is enough to find the diamond Julia set among a parameterized family of cubic polynomials: $z\mapsto z^3+3az^2+b,$ for $(a,b)\in\mathbb{C}^2.$
- Two period 2 Fatou domains \longrightarrow
- Two period 2 critical points −→ 0 and −2*a* −→
- Two simultaneous equations in parameters *a* and *b* −→
- Multiple specific parameters (*a*, *b*):

set a to -0.5. set b to 0.75 + 0.661438i. set a to -0.5. set b to 0.75 - 0.661438i. set a to 0.5. set b to -0.75 + 0.661438i. set a to 0.5. set b to -0.75 - 0.661438i.

Role Reversal: F-P-F (Diamond)

Role Reversal: F-P-F (Diamond)

Role Reversal: F-P-F (Diamond)

70 / 87

Periodic Lamination Data

71 / 87

Periodic Lamination Data

Role Reversal: ?-?-?

Role Reversal: F-F-? or F-?-F

Role Reversal: F-F-P

Pulling back longest leaf

Role Reversal: F-F-P

Periodic Forcing

A major goal is to understand periodic forc[ing](#page-76-0) [f](#page-78-0)[o](#page-76-0)[r](#page-36-0) [d](#page-81-0)[e](#page-82-0)[g](#page-35-0)r[ee](#page-86-0) *[d](#page-36-0)* [≥](#page-86-0) [3](#page-0-0)[.](#page-86-0)

Some Problems

- ¹ What role is played by periodic forcing in determining the simplest lamination from given periodic data.
- ² Does each initial lamination data set (periodic polygons and critical chords) correspond to some complex polynomial?
- ³ How many weakly bicolored trees are there for a given degree (number of vertices)?

- ¹ Are laminations useful in understanding polynomial dynamics?
	- Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
	- There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- ² Are laminations applicable outside polynomial dynamics?
	- Julia sets of the exponential family $E_{\lambda}(z) = \lambda e^{z}$ can be described by laminations of the half-plane. [Hartley and M.]

- ¹ Are laminations useful in understanding polynomial dynamics?
	- Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
	- There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- ² Are laminations applicable outside polynomial dynamics?
	- Julia sets of the exponential family $E_{\lambda}(z) = \lambda e^{z}$ can be described by laminations of the half-plane. [Hartley and M.]

- ¹ Are laminations useful in understanding polynomial dynamics?
	- Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
	- There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- ² Are laminations applicable outside polynomial dynamics?
	- Julia sets of the exponential family $E_{\lambda}(z) = \lambda e^{z}$ can be described by laminations of the half-plane. [Hartley and M.]

- ¹ Are laminations useful in understanding polynomial dynamics?
	- Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
	- There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- 2 Are laminations applicable outside polynomial dynamics?
	- Julia sets of the exponential family $E_{\lambda}(z) = \lambda e^{z}$ can be described by laminations of the half-plane. [Hartley and M.]

- ¹ Are laminations useful in understanding polynomial dynamics?
	- Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
	- There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- 2 Are laminations applicable outside polynomial dynamics?
	- Julia sets of the exponential family $E_{\lambda}(z) = \lambda e^{z}$ can be described by laminations of the half-plane. [Hartley and M.]

Preview of David George's talk

- Correspondence between generic critical portraits and bicolored trees.
- Non-generic critical portraits, all-critical polygons, and tricolored trees.
- \bullet Orbits under σ_d commute with rotation by a fixed point.
- The pullback step under σ_d commutes with rotation by a fixed point.
- Dynamical equivalence of pullback laminations.

THANKS!

85 / 87

 $\left\{ \begin{array}{ccc} \square & \times & \cap \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \end{array} \right.$

Rotation by a Fixed Point: $F-F-P \longrightarrow P-F-F$

Bicolored Tree Helicopter Julia Set

 $\left\{ \begin{array}{ccc} \square & \times & \square & \times & \times \end{array} \right.$ and $\left\{ \begin{array}{ccc} \square & \times & \times & \square & \times \end{array} \right.$

Rotation by a Fixed Point: $F-F-P \longrightarrow P-F-F$

Rotated Bicolored Tree Rotated Helicopter

 $\left\{ \begin{array}{ccc} \square & \times & \cap \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \end{array} \right.$

Role Reversal: F-P-F

Exponential Laminations

Laminations can be adapted to the Exponential family of functions using a half-plane model. Cf: Ha[rtle](#page-87-0)[y](#page-86-0)