Critical Portraits of Complex Polynomials

John C. Mayer

Department of Mathematics University of Alabama at Birmingham

May 24, 2018

2018 Topology Workshop Nipissing University

Coworkers

PhD Dissertation (2015): *On the Simplest Lamination of a Given Identity Return Triangle* Brandon L. Barry

UG Posters: (2017) Critical Portraits and Weakly BiColored Trees (2018) Ambiguous or Non-Generic Critical Portraits of Complex Polynomials David J. George and Simon D. Harris

MS Thesis (2017): Exponential Laminations

Patrick B. Hartley

Work in Progress

2 Critical Chords and Pullbacks

3 Critical Portraits, Dual Graphs, and Simplest Laminations

Polynomial Julia Sets and Laminations

2 Critical Chords and Pullbacks

Oritical Portraits, Dual Graphs, and Simplest Laminations

Polynomial Julia Sets and Laminations

Complex Polynomials

• Polynomial $P : \mathbb{C} \to \mathbb{C}$ of degree $d \ge 2$:

$$P(z) = a_d z^d + a_{d-1} z^{d-1} + \dots + a_1 z + a_0$$

- Compactify \mathbb{C} to \mathbb{C}_{∞} .
- For P, ∞ is attracting fixed point: for z ∈ C with |z| sufficiently large,

$$\lim_{n\to\infty}P^n(z)=\infty.$$

■ Basin of attraction of ∞:

$$B_{\infty} := \{ z \in \mathbb{C} \mid \lim_{n \to \infty} P^n(z) = \infty \}$$

• B_{∞} is an open set.

Julia and Fatou Sets

Definitions:

- Julia set J(P) := boundary of B_{∞} .
- Fatou set $F(P) := \mathbb{C}_{\infty} \setminus J(P)$.
- Filled Julia set $K(P) := \mathbb{C}_{\infty} \setminus B_{\infty}$.

Fun Facts:

- J(P) is nonempty, compact, and perfect.
- K(P) does not separate \mathbb{C} .
- Attracting orbits are in Fatou set.
- Repelling orbits are in Julia set.
- We will assume *J*(*P*) is connected (a continuum: compact, connected metric space).

Polynomial Julia Sets and Laminations

Critical Chords and Pullbacks Critical Portraits, Dual Graphs, and Simplest Laminations

Basillica

$z \mapsto z^2 - 1$

Julia set pictures by Fractalstream

Douady Rabbit

$z \mapsto z^2 + (-0.12 + 0.78i)$

Twisted Rabbit

$z \mapsto z^2 + (0.057 + 0.713i)$

Polynomial Julia Sets and Laminations

Critical Chords and Pullbacks Critical Portraits, Dual Graphs, and Simplest Laminations

Airplane

$z \mapsto z^2 - 1.75$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Minnie Mouse

$z \mapsto z^3 + (0.545 + 0.539i)$

Polynomial Julia Sets and Laminations

Critical Chords and Pullbacks Critical Portraits, Dual Graphs, and Simplest Laminations

Helicopter

$z \mapsto z^3 + (-0.2634 - 1.2594i)$

Polynomial Julia Sets and Laminations

Critical Chords and Pullbacks Critical Portraits, Dual Graphs, and Simplest Laminations

Scorpion/Scepter

$z \mapsto z^3 + 3(0.785415i)z^2$

□ ▶ ◀ ⓓ ▶ ◀ 볼 ▶ ◀ 볼 ▶ 월 - 의 Q (은 14/87

Butterfly $z \mapsto z^3 + 3(-0.5)z^2 + (0.75 + 0.661438i)$

Ninja Throwing Star

$z \mapsto z^3 + (0.20257 + 1.095i)$

16/87

The Simplest Julia Set – the Unit Circle $\partial \mathbb{D}$ $P(z) = z^2$ $re^{2\pi i t} \mapsto r^2 e^{2\pi i 2t}$

The complement $\mathbb{C}_{\infty} \setminus \overline{\mathbb{D}}$ of the closed unit disk is the basin of attraction, B_{∞} , of infinity.

17/87

Dynamics on the Unit Circle

• Consider $P(z) = z^d$ on the unit circle $\partial \mathbb{D}$.

•
$$z = re^{2\pi t} \mapsto r^d e^{2\pi i(dt)} \longrightarrow$$
 Angle $2\pi t \mapsto 2\pi (dt)$.

 Measure angles in revolutions: Points on ∂D are coordinatized by [0, 1).

 $\sigma_d: t \mapsto dt \pmod{1}$ on $\partial \mathbb{D}$

Example d = 2:

Bottcher's Theorem $z \mapsto z^d$ イロン イロン イヨン イヨン

19/87

Polynomial Julia Sets and Laminations

Critical Chords and Pullbacks Critical Portraits, Dual Graphs, and Simplest Laminations

External Rays

$P(z) = z^2 + (-0.12 + 0.78i)$

External Rays \longrightarrow Laminations

• Laminations were introduced by William Thurston as a way of encoding connected polynomial Julia sets.

Coincident external rays

Rabbit triangle

The Rabbit Lamination

The rabbit Julia set

The rabbit lamination

Hyperbolic lamination pictures courtesy of Logan Hoehn

Laminations of the Unit Disk $\mathbb D$

Definition

- A *lamination* L is a collections of chords of D, which we call *leaves*, with the property that any two leaves meet, if at all, in a point of ∂D, and
- such that L has the property that

$$\mathcal{L}^* := \partial \mathbb{D} \cup \{ \cup \mathcal{L} \}$$

is a closed subset of $\overline{\mathbb{D}}$.

• We allow *degenerate* leaves – points of ∂D.

Note that \mathcal{L}^* is a continuum: compact, connected metric space.

Extending σ_d to Leaves

- If *ℓ* ∈ *L* is a leaf, we write *ℓ* = *ab*, where *a* and *b* are the endpoints of *ℓ* in ∂D.
- We define $\sigma_d(\ell)$ to be the chord $\overline{\sigma_d(a)\sigma_d(b)}$.
- The *length* of a chord is the length of the shorter arc of the circle subtended.
- If it happens that σ_d(a) = σ_d(b), then σ_d(ℓ) is a point, called a *critical value* of L, and we say ℓ is a *critical* leaf.

Making the Lamination dynamic!

Definition (Sibling Invariant Lamination)

A lamination \mathcal{L} is said to be *sibling d-invariant* provided that:

- (Forward Invariant) For every $\ell \in \mathcal{L}$, $\sigma_d(\ell) \in \mathcal{L}$.
- (Backward Invariant) For every non-degenerate ℓ' ∈ L, there is a leaf ℓ ∈ L such that σ_d(ℓ) = ℓ'.
- (Sibling Invariant) For every ℓ₁ ∈ ℒ with σ_d(ℓ₁) = ℓ', a non-degenerate leaf, there is a *full sibling collection* of pairwise disjoint leaves {ℓ₁, ℓ₂, ..., ℓ_d} ⊂ ℒ such that σ_d(ℓ_i) = ℓ'.

Conditions (1), (2) and (3) allow generating a sibling invariant lamination from a finite amount of initial data.

σ_2 Binary Coordinates

Location dynamically defined.

σ_2 Binary Coordinates and Rabbit

In binary coordinates, σ_2 is the "forgetful" shift. The overline means the coordinates repeat.

Generating a Lamination from Finite Initial Data

Definition (Pullback Scheme)

A *pullback scheme* for σ_d is a collection of *d* branches $\tau_1, \tau_2, \ldots, \tau_d$ of the inverse of σ_d whose ranges partition $\partial \mathbb{D}$.

Data: Forward invariant lamination.

Pullback Scheme

Definition (Guiding Critical Chords)

The generating data of a pullback scheme are a *forward invariant periodic collection of leaves* and a collection of *d* interior disjoint *guiding critical chords*.

Data: Forward invariant lamination.

Guiding critical chord(s).

^{29/87}

-
- . .
- . ·
- . ·
- · ·
- · ·
- . .
- . .
- •
- -

Pullback Sequence

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- .
- •
- •
- •
- •
- · ·
- •
- · · ·
- . .
 -

Importance of Guiding Crital Chord

-
- . .
- · ·
- . .
- •
- · ·
- · ·
- . .
- · ·
- •
- • • • • • •
Ambiguity

Quadratic Lamination and Julia Set

Rabbit Lamination

Rabbit Julia Set

Quotient space in plane \implies homeomorphic to rabbit Julia set. Semiconjugate dynamics

38/87

Lamination Data for Rabbit Lamination

The critical chord and one endpoint determine the lamination.

- The rabbit triangle's vertices are the only periodic orbit that stays in the left half.
- The fixed point $\overline{0}$ is the only periodic orbit that stays in the right half.

Critical Portrait — Dual Graph

Abstract from the Lamination Data just the critical chord. Bicolored Critical Portrait Bicolored Dual Graph

40/87

Cast of Characters

Cast of Characters

42/87

The Simplest Lamination

Definition

For given lamination data for σ_d consisting of a collection of periodic polygons and guiding critical chords, we call a pull-back lamination whose Fatou domains (1) are bordered by sides of the given polygons, and (2) contain the guiding critical chords, a *simplest lamination* for the given data.

- There is no claim that a simplest lamination is unique, though that would be a desireable consequence of a good definition.
- See Brandon Barry's dissertation: **Theorem**. For σ_3 , there is always a simplest lamination.

σ_3 and Ternary Coordinates

Ternary coordinates correspond to shift σ_3 .

Critical Chords, Critical Sectors, and Fixed Points

Example for σ_3 (angle-tripling):

Weakly Bicolored Trees

Theorem: Critical portraits correspond dually to weakly bicolored trees. [George, Harris]

Definition

A tree is said to be *weakly bicolored* provided it satisfies the following conditions:

- Each of two vertex colors (say, red and blue) is used at least once.
- One vertex color, say blue, can be adjacent to itself.
- One vertex color, say red, cannot be adjacent to itself.

Problem: How many different weakly bicolored trees are there, up to orientation-preserving planar isomorphism, with *n* vertices?

Weakly Bicolored Trees

Below are the three possible weakly bicolored trees on three vertices up to orientation-preserving planar isomorphism:

- Graphs corresponding dually to critical portraits are always trees.
- Critical portraits that produce equivalent laminations are rotations of each other.

Role Reversal: P-F-F

Role Reversal: P-F-F

First two Pullbacks of Triangle

-
- . .
- . .
- . .
- · ·
- · ·
- . .
- · ·
- •
- •
- .
 - ••••••

First two Pullbacks of Triangle

Role Reversal: P-F-F

52/87

Ternary Checkerboard

Verifying Angles

୬ ବ. ୯ 54/87

Verifying Angles

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへの 55/87

Role Reversal: P-F-P

Pullback Sequence

Scorpion Lamination

Scorpion Julia set

Role Reversal: P-F-P

64/87

Finding the Diamond

Can we find a cubic polynomial and a resulting Julia set incorporating the diamond?

Finding the Diamond

 The lamination data is enough to find the diamond Julia set among a parameterized family of cubic polynomials:
z → z³ + 3az² + b, for (a, b) ∈ C².

• Two period 2 Fatou domains \longrightarrow

- Two period 2 critical points \longrightarrow 0 and $-2a \longrightarrow$
- Two simultaneous equations in parameters a and $b \longrightarrow$
- Multiple specific parameters (*a*, *b*):

set a to -0.5. set b to 0.75 + 0.661438i. set a to -0.5. set b to 0.75 - 0.661438i. set a to 0.5. set b to -0.75 + 0.661438i. set a to 0.5. set b to -0.75 - 0.661438i.

Finding the Diamond

- The lamination data is enough to find the diamond Julia set among a parameterized family of cubic polynomials:
 z → z³ + 3az² + b, for (a, b) ∈ C².
- Two period 2 Fatou domains \longrightarrow
- Two period 2 critical points \longrightarrow 0 and $-2a \longrightarrow$
- Two simultaneous equations in parameters a and $b \longrightarrow$
- Multiple specific parameters (*a*, *b*):

set a to -0.5. set b to 0.75 + 0.661438i. set a to -0.5. set b to 0.75 - 0.661438i. set a to 0.5. set b to -0.75 + 0.661438i. set a to 0.5. set b to -0.75 - 0.661438i.

Role Reversal: F-P-F (Diamond)

Role Reversal: F-P-F (Diamond)

69/87

Role Reversal: F-P-F (Diamond)

70/87

Periodic Lamination Data

Periodic Lamination Data

Role Reversal: ?-?-?

Role Reversal: F-F-? or F-?-F

Role Reversal: F-F-P

Pulling back longest leaf

Role Reversal: F-F-P

77/87

Periodic Forcing

A major goal is to understand periodic forcing for degree $d \ge 3$.

Some Problems

- What role is played by periodic forcing in determining the simplest lamination from given periodic data.
- Obes each initial lamination data set (periodic polygons and critical chords) correspond to some complex polynomial?
- How many weakly bicolored trees are there for a given degree (number of vertices)?

- Are laminations useful in understanding polynomial dynamics?
 - Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
 - There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- a Are laminations applicable outside polynomial dynamics?
 - Julia sets of the exponential family *E_λ(z) = λe^z* can be described by laminations of the half-plane. [Hartley and M.]

- Are laminations useful in understanding polynomial dynamics?
 - Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
 - There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- a Are laminations applicable outside polynomial dynamics?
 - Julia sets of the exponential family *E_λ(z) = λe^z* can be described by laminations of the half-plane. [Hartley and M.]

- Are laminations useful in understanding polynomial dynamics?
 - Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
 - There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- a Are laminations applicable outside polynomial dynamics?
 - Julia sets of the exponential family *E_λ(z) = λe^z* can be described by laminations of the half-plane. [Hartley and M.]

- Are laminations useful in understanding polynomial dynamics?
 - Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
 - There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- Are laminations applicable outside polynomial dynamics?
 - Julia sets of the exponential family *E_λ(z) = λe^z* can be described by laminations of the half-plane. [Hartley and M.]

- Are laminations useful in understanding polynomial dynamics?
 - Wandering branch points exist for polynomial Julia sets of degree 3. [Blokh and Oversteegen]
 - There are two distinct kinds of branch points that first return without rotation for polynomial Julia sets of degree 3. [Barry and M.]
- Are laminations applicable outside polynomial dynamics?
 - Julia sets of the exponential family *E*_λ(*z*) = λ*e^z* can be described by laminations of the half-plane. [Hartley and M.]

Preview of David George's talk

- Correspondence between generic critical portraits and bicolored trees.
- Non-generic critical portraits, all-critical polygons, and tricolored trees.
- Orbits under σ_d commute with rotation by a fixed point.
- The pullback step under σ_d commutes with rotation by a fixed point.
- Dynamical equivalence of pullback laminations.

THANKS!

Rotation by a Fixed Point: $F-F-P \longrightarrow P-F-F$

Bicolored Tree

Helicopter Julia Set

ヘロト ヘ戸ト ヘヨト ヘヨト

э

86/87

Rotation by a Fixed Point: $F-F-P \longrightarrow P-F-F$

Rotated Bicolored Tree

Rotated Helicopter

Role Reversal: F-P-F

Exponential Laminations

Laminations can be adapted to the Exponential family of functions using a half-plane model. Cf: Hartley

89/87